Fate map and morphogenesis of presumptive neural crest and dorsal neural tube.
نویسندگان
چکیده
In contrast to the classical assumption that neural crest cells are induced in chick as the neural folds elevate, recent data suggest that they are already specified during gastrulation. This prompted us to map the origin of the neural crest and dorsal neural tube in the early avian embryo. Using a combination of focal dye injections and time-lapse imaging, we find that neural crest and dorsal neural tube precursors are present in a broad, crescent-shaped region of the gastrula. Surprisingly, static fate maps together with dynamic confocal imaging reveal that the neural plate border is considerably broader and extends more caudally than expected. Interestingly, we find that the position of the presumptive neural crest broadly correlates with the BMP4 expression domain from gastrula to neurula stages. Some degree of rostrocaudal patterning, albeit incomplete, is already evident in the gastrula. Time-lapse imaging studies show that the neural crest and dorsal neural tube precursors undergo choreographed movements that follow a spatiotemporal progression and include convergence and extension, reorientation, cell intermixing, and motility deep within the embryo. Through these rearrangement and reorganization movements, the neural crest and dorsal neural tube precursors become regionally segregated, coming to occupy predictable rostrocaudal positions along the embryonic axis. This regionalization occurs progressively and appears to be complete in the neurula by stage 7 at levels rostral to Hensen's node.
منابع مشابه
Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest.
Colonization of trunk neural crest derivatives in avians follows a ventral to dorsal order beginning with sympathetic ganglia, Schwann cells, sensory ganglia and finally melanocytes. Continuous crest emigration underlies this process, which is accounted for by a progressive ventral to dorsal relocation of neural tube progenitors prior to departure. This causes a gradual narrowing of FoxD3, Sox9...
متن کاملDevelopmental potential of trunk neural crest cells in the mouse.
The availability of naturally occurring and engineered mutations in mice which affect the neural crest makes the mouse embryo an important experimental system for studying neural crest cell differentiation. Here, we determine the normal developmental potential of neural crest cells by performing in situ cell lineage analysis in the mouse by microinjecting lysinated rhodamine dextran (LRD) into ...
متن کاملEffects of Shh and Noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm.
To define the timing of neural crest formation, we challenged the fate of presumptive neural crest cells by grafting notochords, Sonic Hedgehog- (Shh) or Noggin-secreting cells at different stages of neurulation in chick embryos. Notochords or Shh-secreting cells are able to prevent neural crest formation at open neural plate levels, as assayed by DiI-labeling and expression of the transcriptio...
متن کاملA role for rhoB in the delamination of neural crest cells from the dorsal neural tube.
The differentiation of neural crest cells from progenitors located in the dorsal neural tube appears to involve three sequential steps: the specification of premigratory neural crest cell fate, the delamination of these cells from the neural epithelium and the migration of neural crest cells in the periphery. BMP signaling has been implicated in the specification of neural crest cell fate but t...
متن کاملBorder controls at the mammalian spinal cord: late-surviving neural crest boundary cap cells at dorsal root entry sites may regulate sensory afferent ingrowth and entry zone morphogenesis.
Boundary caps (BCs) form when neural crest cells, migrating ventrally alongside the neural tube, arrest at sites where axons will enter and exit. However, nothing is known of their subsequent fate and functions. We have found late-surviving neural crest BC cell clusters at proximal dorsal root entry sites throughout rat spinal cord development. Sensory afferents cross BCs to enter the spinal co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 330 2 شماره
صفحات -
تاریخ انتشار 2009